Instructions for students: The notes provided must be copied to the Maths copy and then do the homework in the same copy.

Class 7-Mathematics

Chapter 16

PERIMETER AND AREA

Area of a parallelogram =

base × height

Area of a triangle = $\frac{1}{2} \times base \times height$

Exercise 16.2

Question 6.Solution:

i)	Area of triangle ABC	=	$\frac{1}{2}$ × base × height	
		=	$\frac{1}{2}$ ×9×6 = 27 cm ²	
ii)	$\frac{1}{2}$ × base × height	=	27cm ²	
	$\frac{1}{2}$ × AB × CE	=	27	
	$\frac{1}{2}$ × 7.5 × CE	=	27	
	CE	=	$\frac{27\times2}{7.5}$ = 7.2 cm	

Question 7. Solution:

Hypotenus	9	=	17 cm
Base		Ŧ	8 cm
h ² =	b² + r	o ²	(Pythagoras theorem)
17 ² =	8² + p	\mathbf{D}^2	
289 =	64 +p) ²	
P ² =	225		
P(height)	=	15 cn	n
Area of triangle		=	$\frac{1}{2}$ × base × height
		=	$\frac{1}{2}$ ×8×15 = 60 cm ²

Home work: Solve Exercise 16.2 Questions 3,4, 9,10 in the maths copy.

Practise Exercise 16.2 all problems.

MATHS PRACTICAL

Points to remember.

*Read and understand the experiment.

*In the Maths Practical Copy write down AIM, MATERIAL REQUIRED, METHODOLOGY, TABULAR COLUMN and CONCLUSION on the ruled page. DIAGRAM and CALCULATION on the plane page.

*Follow the PROCEDURE properly to get the correct conclusion.

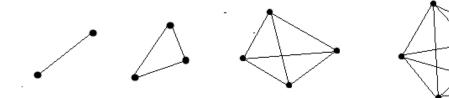
*MATHS PRACTICAL COPY must be a soft cover Lab copy with atleast 50 to 60 pages.

EXPERIMENT NO.4

AIM: To make a general result of number of line segments that can be made by connecting points in pairs when 'n' distinct non collinear points are given in a plane.

MATERIAL REQUIRED : Ruler , Pencil

METHODOLOGY : Observe the pattern of 'number of line segments' in the observation table .


PROCEDURE : Follow all the steps below in order

Step 1. Mark 2 points in a page and join them , also count the number of line segments so formed.

Step 2. Mark 3 non collinear points in a page and join them pair wise so that line segments are formed . Count the number of line segments so formed.

Step 3. Repeat step2 with non collinear points 4, 5, 6, 7 etc.

Step 4. Observe the pattern in number of line segments and generalize it for 'n' non collinear points.

OBSERVATION TABLE

Trial	Number of points	Number of line segments	Pattern
1	2		
2	3		
3	4		
4	5		
5	6		
6	7		

CONCLUSION

The number of line segments that can be made , when 'n' distinct non collinear points are given=-____